
Evaluation of recoverable-robust timetables on tree networks?

Gianlorenzo D’Angelo1, Gabriele Di Stefano1, and Alfredo Navarra2

1 Department of Electrical and Information Engineering, University of L’Aquila.
{gianlorenzo.dangelo,gabriele.distefano}@univaq.it

2 Department of Mathematics and Computer Science, University of Perugia. navarra@dmi.unipg.it

Abstract. In the context of scheduling and timetabling, we study a challenging combinatorial problem
which is very interesting from both a practical and a theoretical point of view. The motivation behind
it is to cope with scheduled activities which might be subject to unavoidable disturbances, such as
delays, occurring during the operational phase. The idea is to preventively plan some extra time for
the scheduled activities in order to be “prepared” if a delay occurs, and to absorb it without the
necessity of re-scheduling the activities from scratch. This realizes the concept of designing so called
robust timetables. During the planning phase, one has to consider recovery features that might be
applied at runtime if disturbances occur. Such recovery capabilities are given as input along with the
possible disturbances that must be considered. The main objective is the minimization of the overall
needed time. The quality of a robust timetable is measured by the price of robustness, i.e. the ratio
between the cost of the robust timetable and that of a non-robust optimal timetable. The considered
problem has been shown to be NP -hard. We propose a pseudo-polynomial time algorithm and apply it
on both random networks and real case scenarios provided by Italian railways. We evaluate the effect
of robustness on the scheduling of the activities and provide the price of robustness with respect to
different scenarios. We experimentally show the practical effectiveness and efficiency of the proposed
algorithm.

1 Introduction

In this work, we investigate an important combinatorial problem in the context of scheduling: the
timetable planning of public transportation systems. It arises, for instance, in the planning phase
of railway systems, requiring to compute a timetable for passenger trains that determines minimal
passenger waiting times. However, many disturbing events might occur during the operational
phase, that is when the system is running. Such events, whose main effect is the arising of delays,
might make unfeasible the scheduled timetables. Hence, it is important to take them into account
in advance.

A schedule that lets vehicles sit at stations for some time will not suffer from small delays of
arriving vehicles, because delayed passengers can still catch potential connecting vehicles. On the
other hand, big delays can cause passengers to lose vehicles and hence imply extra traveling time.
The problem of deciding when to guarantee connections from a delayed vehicle to a connecting
vehicle is known in the literature as delay management problem [3, 7–11, 14, 15]. Although the
problem has a natural formalization, it turns out to be very complicated to be optimally solved. In
fact, it has been shown to be NP -hard, while it is polynomial in some particular cases (see [3, 10,
11, 15]).

In order to cope with the management of delays we follow the recoverable robust optimization
approach provided in [2, 13]. The aim is to design timetables in the planning phase in order to be
“prepared” to react against possible disturbances. E.g., if a delay occurs, the designed timetable
? This work was partially supported by the Future and Emerging Technologies Unit of EC (IST priority - 6th FP),

under contract no. FP6-021235-2 (project ARRIVAL).

should guarantee the recovery of the scheduled events by means of allowed operations represented
by given recovery algorithms. In [6], interesting theoretical results were presented, assuming that
only one delay might occur at a generic event of the scheduled event activity network (see [3, 15])
which is a directed graph that represents the sequence and the dependencies of scheduled events.
The attention was restricted to event activity networks whose topology is a tree. In this context, it
is worth noting that the assumption concerning one single delay does not constitute a restriction
to the problem as k delays of size at most α can be modelled as one delay of size at most kα.
An event either absorbs the entire delay or propagates it to all the subsequent events. In order to
absorb the delay, an event is associated with a so called slack time of α time. Clearly, by associating
a slack time of α to each event, every delay of duration α can be locally absorbed. However, this
approach is not practical as the overall duration time of the scheduled events would increase too
much. The planned timetables should be instead able to absorb the possible occurring delay in
a fixed amount of steps, ∆. This means that if a delay occurs, it is not required that the delay
is immediately absorbed (unless ∆ = 0), but it can propagate to a limited number of events in
the network. Namely, the propagation might involve at most ∆ events. The objective function to
minimize is the total time required by the events in order to serve all the scheduled activities and
to be robust with respect to one possible delay of α time. That is, a timetable is robust if it can be
recovered by postponing at most a fixed number of events in case of a delay.

In [4], the authors show that the described problem is NP -hard when the event activity network
topology is a DAG with weights associated to nodes. In the same paper, it is shown that the problem
where the weights are associated to the arcs is a subproblem. Even for this subproblem, in [3], the
authors show that the problem remains NP -hard, and they provide polynomial time algorithms
which cope with the case of ∆ = 0. In [4], the authors provide algorithms for a generic ∆ when the
event activity network is a linear graph with positive weights on nodes.

In this paper, we keep on investigating the complexity of the problem. In particular, we study
event activity networks which have a tree topology and positive weights. In [6], this problem has
been shown to be NP -hard even in this restricted scenario. We provide an algorithm that solves the
problem in O(n∆+1) time where n is the number of events in the input event activity network. The
result implies that the problem can be solved in pseudo-polynomial time for constant ∆, i.e. when ∆
is fixed a priori. The algorithm is not polynomial, since it has been shown in [6] that some instances
can be represented in O(log n) space and the problem restricted to these instances remains NP -
hard. Hence, when ∆ is fixed, the proposed algorithm requires a time which is polynomial in n, that
is pseudo-polynomial in the size of the instances. For practical contexts, ∆ << n is a reasonable
restriction, since we may require that in at most ∆ steps (independently from the input instance)
a possible delay must be absorbed. The algorithm is based on some investigated properties that
specify on trees some preferences about which arcs are the best candidates to be associated with
slack times. Intuitively, on trees, we prove that the choice to carefully postpone the assignment
of a slack time to descendent activities as much as possible leads to cheaper solutions. Another
interesting property for tree topologies is that a solution with two consecutive activities associated
both with a slack time either is not optimal or it can be turned into an optimal solution without
such occurrence, unless ∆ = 0.

We evaluate the proposed algorithm both theoretically and experimentally. The latter evaluation
is done by using random networks and real world instances of the problem provided by the Italian
railways company, Trenitalia [16]. It turns out that, even if the algorithm is not polynomial, it is

2

very efficient in practice. Moreover, we show the applicability and the low costs in terms of slack
times needed for making robust the considered timetables with respect to different scenarios.

Preliminary results has been presented at the 3rd International Seminar on Railway Operations
Modelling and Analysis (RailZurich2009).

2 Recoverable robust timetabling problem

In railway systems, events and dependencies among events are modeled by means of an event
activity network (see [15]). This is a directed graph where nodes represent arrival or departure
events of trains and arcs represent activities occurring between events (i.e., waiting in a train,
driving between stations or changing to another train). Note that, event activity networks are a
particular class of direct acyclic graphs (DAGs).

Given a DAG G = (V, A), the timetabling problem consists in assigning a time to each event in
such a way that all the constraints provided by the set of activities are respected. Given a function
L : A → N that assigns the minimal duration time to each activity, a timetable Π ∈ R|V |≥0 for G is an
assignment of a time Π(u) to each event u ∈ V such that Π(v)−Π(u) ≥ L(a), for all a = (u, v) ∈ A.

Given a function w : V → R≥0 that assigns a weight to each event, an optimal solution to the
timetabling problem minimizes the total weighted time for all events. Formally, TT is as follows.

TT

given: A DAG G = (V, A), a function L : A → N and a function w : V → R≥0.
problem: Find a function Π : V → R≥0 such that Π(v) − Π(u) ≥ L(a) for all a = (u, v) ∈ A

and f(Π) =
∑

v∈V w(v)Π(v) is minimal.

Then, an instance i of TT is specified by a triple (G,L, w), where G is a DAG, L associates a
minimal duration time to each activity, and w associates a weight to each event. The set of instances
for TT is denoted by I. The set of feasible solutions for i ∈ I is: F (i) = {Π : Π(u) ∈ R≥0, ∀u ∈
V and Π(v)−Π(u) ≥ L(a), ∀a = (u, v) ∈ A}.

A solution Π for TT may induce a positive slack time s(a) for each a ∈ A. In particular, since the
planned duration of an activity a = (u, v) is given by Π(v)−Π(u), then s(a) = Π(v)−Π(u)−L(a).

Problem TT can be solved in linear time by assigning the minimal possible time to each event
(e.g. by using the Critical Path Method [3, 12]). However, in practical context, delays on the sched-
uled activities may occur. In this cases, an optimal solution for TT could result unfeasible and
recovery (on-line) strategies become necessary.

Given an instance i = (G,L, w) for TT , and a constant α ∈ R≥0, we consider a single delay of at
most α time. This is modeled as an increase on the minimal duration time of the delayed activity.
We denote the set of instances of TT that can be obtained by applying all possible modifications
to i as a function M(i) which is formally defined as follows:

M(i) =
{
(G,L′, w) : ∃ ā ∈ A : L(ā) ≤ L′(ā) ≤ L(ā) + α, L′(a) = L(a) ∀a 6= ā

}
.

Recovery capabilities against delays are modeled as a class A of algorithms. The class A is
defined by introducing the concept of events affected by one delay as follows.

Definition 1. Given a DAG G = (V, A), a function s : A → R≥0, and a number α ∈ R≥0, a
node x is α-affected by a = (u, v) ∈ A (equivalently, a α-affects x) if there exists a path p = (u ≡
v0, v ≡ v1, . . . , vk ≡ x) in G, such that

∑k
i=1 s((vi−1, vi)) < α. The set of nodes α-affected by an

arc a = (u, v) is denoted as Aff(a).

3

In the following, given a solution Π for i = (G,L, w), the slack time function induced by Π is used
as the function s in the previous definition. It is assumed that the recovery capabilities allow to
change the time of at most ∆ events. Formally, each algorithm in A is able to compute a solution
Π ′ ∈ F (j) if |Aff(a)| ≤ ∆, where ∆ ∈ N. This implies that a robust solution must guarantee that,
if a delay of at most α time occurs, then it affects at most ∆ events.

We define the recoverable robust timetabling problemRTT as the problem of finding a timetable
that can be recovered by changing the time of at most ∆ events when a delay of at most α time
occurs. According to the recoverable robustness model in [2, 13], such a problem is defined as
RTT = (TT ,M,A).

In other words, a solution Π for an instance i is feasible for RTT if it can be recovered by
applying an algorithm in A which changes the time of at most ∆ events for each possible disturbance
j ∈ M(i). The solution Π is called a robust solution for i with respect to the original problem TT .

A robust algorithm for TT is any algorithm Arob such that, for each i ∈ I, Arob(i) is a robust
solution for i with respect to TT . The quality of a robust solution is measured by the price of
robustness. The price of robustness of Arob is the worst case ratio between the robust solution
for an instance of RTT and the corresponding optimal solution for the underlying TT problem.
Formally,

Prob(RTT , Arob) = max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}
}

.

The price of robustness Prob(RTT) of problem RTT is defined as the minimum price of robust-
ness among all the robust algorithms. An algorithm Arob is RTT -optimal if Prob(RTT , Arob) =
Prob(RTT). A robust solution Π for an instance i of RTT is RTT -optimal if: f(Π) =
min {f(Π ′) : Π ′ is a feasible solution for RTT }.

3 Pseudo-Polynomial Algorithms for fixed ∆

In this section, we give some theoretical results, whose omitted proofs can be found in Appendix.
We concentrate our attention to instances of RTT where the DAG is a tree. Hence, in the reminder
of the paper, we will refer as RTT to the problem restricted to trees. We denote as T = (V,A) a
tree rooted in r. If v ∈ V , deg(v) denotes the degree of v, Tv denotes the subtree of T rooted in
v ∈ V . Given a subtree Tv, No(Tv) denotes the set of nodes y such that (x, y) ∈ A, x ∈ Tv and
y 6∈ Tv. We denote by w(Tv) the value

∑
x∈Tv

w(x) and by |Tv| the number of nodes contained in
Tv. Note that, in order to compute all the values w(Tv) for each v ∈ V , one visit of Tr is sufficient.

We look for solutions which assign only slack times of size α, as in the next lemma we prove
that for any instance, there exists a RTT -optimal solution which fulfills this condition.

Lemma 1. Given an instance i of RTT , for each solution Π for i, there exists a solution Π ′

for i such that f(Π ′) ≤ f(Π) and, for each arc a = (x, y), either Π ′(y) = Π ′(x) + L(a) or
Π ′(y) = Π ′(x) + L(a) + α.

Denoted by RTT∆ the problem RTT when the maximal number ∆ of affected nodes allowed
is fixed a priori, algorithm SA∆, provided in Figure 1, is RTT∆-optimal for any fixed ∆ ≥ 1. The
computational complexity of SA∆ is O(n∆+1).

In order to characterize a solution Π, we need the following definition and lemma.

Definition 2. Given a solution Π of RTT∆ and a node v ∈ V , a ball is the maximal subtree BΠ(v)
rooted in v such that for each arc a = (x, y) in BΠ(v), s(a) = 0.

4

Lemma 2. For each instance of RTT∆, there exists a RTT∆-optimal solution Π such that for each
v ∈ V , BΠ(v) cannot be extended by adding any node from No(BΠ(v)) while keeping feasibility and,
unless ∆ = 0, at most one of two consecutive arcs has a slack time of α.

Then, for any ∆ ≥ 1, there exists a RTT∆-optimal solution Π with the following structure. By
Lemma 2, for each arc a outgoing from the root r, s(a) = 0. Then, for each v ∈ No(r), Π induces a
ball BΠ(v) such that |BΠ(v)| ≤ ∆. In particular, |BΠ(v)| < ∆ only if |Tv| < ∆. As a consequence,
|BΠ(r)| ≤ 1+∆ · deg(r). For each arc a = (x, y) such that x ∈ BΠ(r) and y 6∈ BΠ(r), s(a) = α. By
Lemma 2, for each arc a outgoing from y, s(a) = 0 and the same arguments used for BΠ(r) can be
used to characterize BΠ(y).

A possible approach can be that of enumerating all the solutions with the above structure
and choosing the cheapest one. Note that, such an approach has a computational time which is
exponential in n. In what follows, we show a recursive approach which avoids to consider a large
number of solutions and thus reducing the computational time to a polynomial in n. The algorithm
SA∆ works as follows. It assigns Π(r) = 0 and no slack times to arcs outgoing from r. Then, for
each v ∈ No(r) it has to decide which subtree of Tv belongs to BΠ(r). To do this, it evaluates the
cost, in terms of the value of the objective function, of any possible subtree B of Tv rooted at v of
size at most ∆ and then chooses the subtree which implies the cheapest solution.

For each already defined ball BΠ , this procedure is then repeated for each node v ∈ No(BΠ)
which does not belong to an already defined ball by using v as the root.

The cost of a subtree B rooted at v is computed as the value of the objective function when B
is chosen as a ball rooted in v. That is, for each arc a ∈ B, s(a) = 0; for each a = (x, y) ∈ A such
that x ∈ B and y 6∈ B, s(a) = α; and for each node in Ty, an optimal solution is chosen. Computing
this cost requires to know the optimal solution of a subtree, this is done by using recursively SA∆.

Formally, SA∆ is given in Figure 1. It takes a node v as input and it returns a pair (Π, f(Π))
where Π is a RTT -optimal timetable for Tv and f(Π) is its value of the objective function. A
solution for RTT∆ is computed by calling SA∆(r).

In detail, Lines 1 assigns Π(v) and initializes fΠ . For each vi ∈ No(v), Lines 3–21 compute
Π for the subtree Tvi . Lines 3–14 compute a subtree Bmin of Tvi rooted at vi of size at most ∆
which implies the cheapest solution of cost fmin. To do this, Line 4 enumerates all the possible
subtree B rooted at vi of Tvi of size at most ∆. Then, Lines 5–8 compute the cost fB of nodes
in B and Lines 9–11 compute the cost of nodes not in B by summing for each (u, z) ∈ A, such
that u ∈ B and z 6∈ B the cost fTz of a solution of Tz computed by recursively calling SA∆(z).
If fTz is the cost of a solution of a subtree Tz, then the contribution to fB of all nodes in Tz is
(ΠB(u)+L((u, z))+α) ·w(Tz) where ΠB(u) is the time assigned to u if B is chosen as a ball rooted
in vi. In fact, each time assigned to such nodes have been shifted of ΠB(u) + L((u, z)) + α. Finally,
Lines 15–21 assign Π for the subtree Tvi by choosing Bmin as a ball rooted in vi.

The following theorems give the theoretical results concerning the performances of SA∆.

Theorem 1. SA∆ is RTT∆-optimal.

Theorem 2. The price of robustness of SA∆ is bounded by Prob(RTT∆, SA∆) ≤ 1 + α
2 .

Theorem 3. The price of robustness of RTT∆ is bounded by Prob(RTT∆) ≥ 1 + α
∆+1 .

Theorem 4. SA∆ requires O(n∆+1) time and O(n2) space, where n is the number of nodes.

By Theorem 4, SA∆ requires pseudo-polynomial time for fixed ∆. However, it is worth investigating
the performances of SA∆ in practical scenarios.

5

Algorithm SA∆

Input: v ∈ V
Output: (Π, f(Π)), times assigned at nodes in Tv with Π(v) = 0 and f(Π)

1. Π(v) = 0, fΠ = 0
2. for each vi ∈ No(v)
3. fmin = +∞
4. for each maximal subtree B rooted at vi of Tvi , such that |B| ≤ ∆
5. ΠB(vi) = L((v, vi)), fB = L((v, vi)) · w(vi)
6. for each (x, y) ∈ B
7. ΠB(y) = ΠB(x) + L((x, y))
8. fB = fB + ΠB(y) · w(y)
9. for each (u, z) ∈ A, such that u ∈ B and z 6∈ B
10. (ΠTz , fTz) = SA∆(z)
11. fB = fB + fTz + (ΠB(u) + L((u, z)) + α) · w(Tz)
12. if fB < fmin then
13. fmin = fB

14. Bmin = B
15. Π(vi) = L((v, vi))
16. for each (x, y) ∈ Bmin

17. Π(y) = Π(x) + L((x, y))
18. for each (u, z) ∈ A, such that u ∈ Bmin and z 6∈ Bmin

19. for each x ∈ Tz

20. Π(x) = ΠTz (x) + Π(u) + L((u, z)) + α
21. fΠ = fΠ + fmin

22. return (Π, fΠ)

Fig. 1. Recursive algorithm to compute a robust timetable on a tree.

4 Experimental Study

We present the experimental results first on the real world data provided by Trenitalia [16] and,
then, on the randomly generated data.

4.1 Real world data

We consider real case scenarios of Single-Line Corridors. A corridor is a sequence of stations rep-
resented by a line. The stations are linked by multiple tracks and each station is served by many
trains of different types. Types of trains mostly concern the locations that each train serves and
its maximal speed. For an example, see Figure 2. In these systems, it is a practical evidence that
slow trains wait for faster trains in order to serve passengers to small stations. This situation is
modelled with the only assumption that the changes of passengers from one train to another at
a station must be guaranteed only when the second train is starting its journey from the current
station. In practice, the only restriction is that we do not require as a constraint the possibility for
passengers to change for a train which has already started its journey. This does not mean that
passengers cannot change train at some station in the middle of a train journey, but only that this
is not considered as a constraint. Further motivations for this model can be found in [5].

Let us consider the real world example provided in Figure 2 where three trains serve the same
line. The slowest train, the Espresso, goes from Verona to Bologna, the Interregionale goes from
Fortezza to Bologna, and the fastest one, the Euro-City, goes from Brennero to Bologna.

The Euro-City starts its journey before all the other trains, and it arrives at Fortezza station
before the departure event of the Interregionale. At Verona Station, the Espresso is scheduled to

6

Interregionale

Eurocity

Espresso

Bren
ne

ro

Coll
e I

sa
cro

Oste
ria

 N
uo

va

Crev
alc

or
e

Iso
la

de
lla

 sc
ala

Dom
eg

lia
ra

Rov
ere

to

M
ez

zo
co

ro
na

For
tez

za

M
ira

nd
ola

Osti
gli

a

Bolz
an

o

Chiu
sa

Vipi
ten

o

Cam
po

 di
 T

ren
s

Ora Tren
to

Vero
na

 P
. N

.

Nog
ara

Pog
gio

 R
us

co

S. G
iov

an
ni

Bolo
gn

a C
en

tra
le

Bres
sa

no
ne

Pon
te

Gard
en

a

Ala S. F
eli

ce

Fig. 2. Example of three trains serving a same line. For the sake of clarity, for each station and for each train, we
represented only one circle which indeed corresponds to an arrival and a departure event.

start its journey after the arrival event of the Euro-City. Hence, there is an arc between the Euro-
City and the starting event corresponding to the Interregionale at Fortezza station, and another
arc connecting the Euro-City to the starting event of the Espresso at Verona station. As described
above, an arc which represents a changing activity can only connect one node to the head of a
branch. The DAG obtained by this procedure is a tree, as shown in Figure 2. In general, the result
of this procedure is a forest and we link the roots of the trees in this forest to a unique root event
(for details, see [5]). The weights on the events are assigned according to the relevance of the trains
which they belong to, and the weight of the root is 0.

Table 1 shows the data used in the experiments referring to 4 corridors provided by Trenitalia.
Starting from the provided data and according to the described requirements, we derived event

Corridor Line N. of Stations N. of Trains

BrBo Brennero–Bologna 48 68
MdMi Modane–Milano 54 291
BzVr Bolzano–Verona 27 65
PzBo Piacenza–Bologna 17 25

Table 1. Data used in the experiments.

activity networks having tree topologies whose sizes are reported in Table 2. We then apply the
SA∆ algorithm on different scenarios, comparing the obtained robust timetables with the optimal
non-robust ones.

Corridor N. of Nodes Maximum Average Maximum
Traveling Time Activity Time Number of Hops

BrBo 1103 516 9 66
MdMi 4358 318 8 27
BzVr 648 197 5 37
PzBo 163 187 10 14

Table 2. Sizes of the trees.

7

α = 9
α = 5
α = 1

∆

Prob

121086420

5.5
5

4.5
4

3.5
3

2.5
2

1.5
1

Fig. 3. Theoretical lower bounds to Prob.

We now show and discuss interesting results about the applicability and the low costs in terms of
slack times needed for making robust the considered timetables with respect to different scenarios.

Our experiments are based on three main parameters. Namely, we vary on the maximum number
∆ of events that can be affected by an occurring delay, the maximum time delay α, and the case of
average or real times L needed to perform the scheduled activities. In what follows, all the activities
times and the delays are expressed in minutes.

In order to obtain RTT instances, for each corridor among BrBo, MdMi, BzVr and PzBo, we vary
∆ ∈ {1, 2, . . . 11} and α ∈ {1, 5, 9, 13, 17}. Moreover, we use two different functions L: the first
one is based on the real values obtained by available data; the second one is the constant average
function which assigns to each activity the same duration time obtained as the average among all
real values of each instance. This second function is used to test the behavior of the algorithm
based only on the tree network topology, in order to understand the dependability with respect to
real values. The average activity times for each instance are shown in Table 2.

For each corridor we show three diagrams concerning the objective function f , the price of
robustness Prob of SA∆, and the computational time needed by SA∆ in the mentioned cases. In each
diagram, we show three curves which represent the results obtained by setting L to real values and
α ∈ {1, 5, 9}. Results obtained by assigning α ∈ {13, 17} are not shown as they are less significant
being α too large compared with the average activity time. Furthermore, for the instance BrBo, we
give the three diagrams obtained by setting L to the corresponding average activity time. For any
other instance we do not give these diagrams as the inferred properties do not change. The full set
of results can be found in [1]. All the experiments have been carried out on a workstation equipped
with a 2,66 GHz Intel Core2 processor, 8Gb RAM, Linux (kernel 2.6.27) and gcc 4.3.3 compiler.

In the obtained diagrams, the values of the objective function f of the robust problem are
compared to the optimum, i.e. the value of f given by the non-robust problem. As ∆ increases, the
curves tend rapidly to the optimum. For small values of α, the price of robustness is very low.

In order to compare the experimentally computed values of Prob with the theoretical lower
bounds given by Theorem 3, we provide Figure 3 which shows the values of function 1 + α

∆+1 for
α ∈ {1, 5, 9} and ∆ ∈ {1, 2, . . . , 11}. Note that, the computed values of Prob are always smaller than
the theoretical lower bounds as the latter are given for the worst case instances.

Concerning the diagrams representing the computational times, we can see that our tests re-
quired a very small amount of time. However, the exponential growth of the curves as ∆ increases
is already evident. Surprisingly, for practical purposes, our experiments show that algorithm SA∆

can be safely applied without requiring ages of computation.

8

Corridor BrBo (see Figure 4, left). This corridor is quite large in terms of served stations and
passing trains as shown in Table 1. We can see that the price of robustness is very close to 1 when
α = 1 while it is almost 1.5 when considering big delays of α = 9 and ∆ = 1.

When ∆ = 1, the algorithm adds one slack time for each pair of consecutive arcs. Then, the
value of Prob, when ∆ = 1, is about 2Lavg+α

2Lavg
= 1 + α

2Lavg
, where Lavg is the average activity time,

as shown in Figure 4.

It is also interesting to note how the values of f and Prob decrease quickly with ∆. In particular,
the price of robustness is between 1.00754 and 1.06785, when ∆ = 11. This implies that adding
robustness reflects an increasing in the costs of just 0.7− 6.7%.

Regarding the computational time, we can see that it increases with ∆ but it is less than 30
milliseconds in the worst case. In detail, in the worst case, for ∆ = 11 we need about 28 milliseconds
to achieve a price of robustness of at most 1.06785.

α = 9
α = 5
α = 1

∆

121086420

0.03
0.028
0.026
0.024
0.022
0.02

0.018
0.016
0.014
0.012
0.01

0.008

α = 9
α = 5
α = 1

∆

Time (sec)

121086420

0.03
0.028
0.026
0.024
0.022
0.02

0.018
0.016
0.014
0.012
0.01

0.008

α = 9
α = 5
α = 1

121086420

1.5
1.45
1.4

1.35
1.3

1.25
1.2

1.15
1.1

1.05
1

α = 9
α = 5
α = 1

Prob

121086420

1.5
1.45
1.4

1.35
1.3

1.25
1.2

1.15
1.1

1.05
1

Opt
α = 9
α = 5
α = 1

121086420

300000
290000
280000
270000
260000
250000
240000
230000
220000
210000
200000
190000

Opt
α = 9
α = 5
α = 1

f

121086420

290000
280000
270000
260000
250000
240000
230000
220000
210000
200000
190000

Fig. 4. Corridor BrBo with real values of minimum activity times (left) and average activity times (right)

9

Corridor BrBo (average activity times) (see Figure 4, right). In this case, the objective function
assumes almost identical values with respect to the previous case. As we expect, the value of the
objective function does not depend on the value of L, but only on the structure of the tree and on
the size of the delay.

Regarding Prob, its value strictly depends on α/Lavg which can be considered a parameter for
evaluating the magnitude of a delay. It is worth noting that for ∆ = 1 an optimal robust timetable
has to assign exactly one slack time of size α for each pair of consecutive activities. It follows that,
when α = 9 and the average activity time is equal to 9, the price of robustness is 1.5, as it can be
verified in Figure 4. The same happens for α = 5, where the expected value is about 1.27.

Corridor MdMi (see Figure 5). This corridor is the biggest in terms of served stations and passing
trains. As shown in Table 1, the number of considered trains is more than four times the one in
BrBo, while the number of stations is slightly more. Still, we can see comparable performances with
respect to the price of robustness even though the incidence of the required computational time
becomes more evident. However, as the timetables are calculated at the planning phase and not at
runtime, the required time is still of an acceptable order being about 96 seconds in the worst case.
Results regarding corridors BzVr and PzBo are reported in Appendix.

4.2 Randomly generated data

By analyzing the results in the previous section, it is worth noting that time required by the
algorithm on the real world instances is negligible with respect to the theoretical bound. This
suggests that those instances have some hidden properties. One cause might be the almost linearity
of the tree structure, that is, the trees are made of long paths and the nodes have low outdegree.

In order to investigate on this matter, we test the behavior of the algorithm on a set of five
randomly generated trees. Each tree contains 1000 nodes and is generated starting from a single
node and then by linking a new generated node to an existing one extracted uniformly at random.
The node weights randomly rank between 1 and 10, and the minimum duration time for each activity
randomly ranks between 1 and 18. In this way, the average activity duration time is comparable
with that of the presented real world instances. Finally, ∆ ∈ {1, 2, . . . 10} and α ∈ {1, 5, 9}. For
each pair (∆,α), we performed one test for each randomly generated tree.

In Figure 6, we summarize the obtained results. In particular, we show the average values of
price of robustness and computational time, and the standard deviation of the price of robustness.
The obtained results confirm our intuition that the almost linear structure of the real world data
heavily influences the computational times. In fact, in this case the time elapsed is about 10000
times worse than that of the corridor BrBo which have comparable size, but different structure.
However, the price of robustness is kept low as in the previous instances.

5 Conclusion

We have presented algorithm SA∆ for solving the problem of planning robust timetables when the
input event activity network topology is a tree. The delivered timetables can cope with delays that
might occur at runtime among the scheduled activities. In particular, the algorithm ensures that,
if a delay occurs, no more than ∆ activities are influenced by the propagation of such a delay. We
have shown the performances of SA∆ both theoretically and experimentally. Despite the problem is

10

α = 9
α = 5
α = 1

∆

Time (sec)

121086420

100
90
80
70
60
50
40
30
20
10
0

α = 9
α = 5
α = 1

Prob

121086420

1.5
1.45
1.4

1.35
1.3

1.25
1.2

1.15
1.1

1.05
1

Opt
α = 9
α = 5
α = 1

f

121086420

850000

800000

750000

700000

650000

600000

550000

Fig. 5. Corridor MdMi

proved to be NP -hard, the obtained results show the applicability of the algorithm to ensure robust
timetables with respect to bounded delays. This suggests the practical applicability of SA∆ to the
planning phase of timetables in order to prevent overlong passengers traveling times. Moreover,
the experimental results suggest further investigation about the structure of the input instances.
In particular, it has been highlighted that the algorithm behaves well on instances which have an
almost linear structure.

References

1. http://informatica.ing.univaq.it/misc/TimetablingTree2009/.

2. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Robust Algorithms and Price of Robustness
in Shunting Problems. In Proc. of the 7th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS), pages 175–190, 2007.

3. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Delay Management Problem: Complexity
Results and Robust Algorithms. In Proc. of 2nd Annual International Conference on Combinatorial Optimization
and Applications (COCOA), volume 5165 of LNCS, pages 458–468. Springer, 2008.

11

α = 9
α = 5
α = 1

Time (sec)

10987654321

400
350
300
250
200
150
100
50
0

α = 9
α = 5
α = 1

Prob

10987654321

1.6

1.5

1.4

1.3

1.2

1.1

1

Fig. 6. Randomly generated trees

4. S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel. Dynamic Algorithms for Recoverable Robustness
Problems. In Proc. of the 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS), 2008.

5. G. D’Angelo, G. Di Stefano, and A. Navarra. Recoverable-robust timetables for trains on single-line corridors.
Technical Report ARRIVAL-TR-0180, ARRIVAL project, 2008. Presented at 3rd International Seminar on
Railway Operations Modelling and Analysis (RailZurich2009).

6. G. D’Angelo, G. Di Stefano, and A. Navarra. Recoverable robust timetables on trees. Technical Report ARRIVAL-
TR-0163, ARRIVAL project, 2008.

7. L. De Giovanni, G. Heilporn, and M. Labbé. Optimization models for the delay management problem in public
transportation. European Journal of Operational Research, 189(3):762–774, 2007.

8. M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway delay management: Exploring its algorithmic
complexity. In Proc. of the 9th Scandinavian Workshop on Algorithm Theory (SWAT), volume 3111 of LNCS,
pages 199–211, 2004.

9. M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The Computational Complexity of Delay Management. In Proc.
of the 31st International Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 3787 of
LNCS, pages 227–238, 2005.

10. M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. Online Delay Management on a Single Train Line. In Proc.
of the Algorithmic Methods for Railway Optimization (ATMOS04), volume 4359 of LNCS, pages 306–320, 2007.

11. A. Ginkel and A. Schöbel. The bicriteria delay management problem. Transportation Science, 41(4):527–538,
2007.

12. F.K. Levy, G.L. Thompson, and J.D. Wies. The ABCs of the Critical Path Method. Graduate School of Business
Administration. Harvard University, 1963.

13. C. Liebchen, M. Lübbecke, R. H. Möhring, and S. Stiller. Recoverable robustness. Technical Report ARRIVAL-
TR-0066, ARRIVAL Project, 2007.

14. A. Schöbel. A model for the delay management problem based on mixed integer programming. Electronic Notes
in Theoretical Computer Science, 50(1):1–10, 2004.

15. A. Schöbel. Integer programming approaches for solving the delay management problem. In Proc. of the Algo-
rithmic Methods for Railway Optimization (ATMOS04), volume 4359 of LNCS, pages 145–170, 2007.

16. Trenitalia. http://www.trenitalia.com/.

12

A Omitted proofs

Proof (of Lemma 1). Given Π, we define Π ′ = Π and then we perform iteratively the next two
operations until none of them can be applied.

1. For each arc a = (x, y) such that Π ′(y) > Π ′(x) + L(x, y) + α, we assign Π ′(y) = Π ′(x) +
L(x, y) + α;

2. For each arc a = (x, y) such that Π ′(x) + L(x, y) < Π ′(y) < Π ′(x) + L(x, y) + α, we assign
Π ′(y) = Π ′(x) + L(x, y) if Π ′ remains feasible.

By construction, at the end of the procedure, Π ′ is feasible.
Now we show that, at the end of the procedure, for each arc a = (x, y), either Π ′(y) = Π ′(x) +

L(x, y) or Π ′(y) = Π ′(x) + L(x, y) + α. There cannot exist an arc a = (x, y) such that Π ′(y) >
Π ′(x) + L(x, y) + α, as otherwise Rule 1 can still be applied.

By contradiction, we assume that there exists a non empty set of arcsA = {a = (x, y) : Π ′(x)+
L(x, y) < Π ′(y) < Π ′(x) + L(x, y) + α}. Let a = (x, y) ∈ A be an arc for which d(r, y) is minimal.
Then, for each arc b in P (r, x), if x ∈ Aff(b), then y ∈ Aff(b). It follows that, if we assign Π ′(y) =
Π ′(x) + L(x, y), Π ′ remains feasible, a contradiction with respect to Rule 2. ¤

Proof (of Lemma 2). By contradiction, we assume that there exists an instance such that, for each
RTT∆-optimal solution Π ′ there exists a non empty set of nodes V which contradict the thesis:
for each v ∈ V, BΠ′(v) can be extended by adding a node from No(BΠ(v)). Let v ∈ V be a node
such that d(r, v) is minimal. As BΠ′(v) can be extended, then there exists an arc (x, y) such that
x ∈ BΠ′(v), y 6∈ BΠ′(v) and for each a ∈ A such that x ∈ Aff(a), |Aff(a)| < ∆. It follows that
Π ′(y) = Π ′(x) + L(x, y) + α. Then, the solution Π ′′ that assigns Π ′′(y) = Π ′(x) + L(x, y) while
keeping the rest of the original solution is robust and f(Π ′′) ≤ f(Π ′). This procedure is repeated
until BΠ(v) becomes maximal. The obtained solution is optimal as f(Π ′′) ≤ f(Π ′) and cannot be
extended by adding a node while keeping feasibility, a contradiction.

Suppose that ∆ > 0, by contradiction, we assume that each RTT∆-optimal solution Π ′ assigns
a slack time to both of two consecutive arcs, i.e. there exist (x, y), (y, z) ∈ A such that Π ′(y) =
Π ′(x) + L(x, y) + α and Π ′(z) = Π ′(y) + L(y, z) + α. Then, we can extend the ball rooted in
y by defining a solution Π ′′ such that Π ′′(z) = Π ′(y) + L(y, z) while keeping the rest of the
original solution. Therefore, Π ′′ is robust and f(Π ′′) ≤ f(Π ′). The obtained solution is optimal as
f(Π ′′) ≤ f(Π ′), a contradiction with respect to the first part of the proof. ¤

Proof (of Theorem 1). The proof is by induction on the height h(T) of the tree T .
Inductive basis. We prove the statement for trees T such that h(T) = 0. In this case, T consists
of a single node. Hence, SA∆ performs only Lines 1 and 23 as No(v) = ∅. Then, SA∆(r) returns
Π(r) = 0, f(Π) = 0.
Inductive step. We prove that if SA∆ is RTT∆-optimal for any tree T ′ of height h(T ′) ≤ h− 1, then
it is RTT∆-optimal for any tree T such that h(T) = h.

Let us denote as Opt∆(x) the value of the objective function of an optimal robust solution of
the instance given by the subtree Tx rooted at x.

13

By Lemma 2, an optimal solution Π assigns Π(vi) = L(v, vi), for each vi ∈ No(v). Moreover,
for each vi ∈ No(v), Π implies a maximal ball Bmin of minimum cost. That is, one has to find Bmin

among subtrees BΠ of Tvi of size at most ∆ such that:

Bmin = argmin
BΠ



w(vi) +

∑

(x,y)∈BΠ

(Π(x) + L(x, y)) · w(y) +

∑

(u,z):u∈BΠ ,z 6∈BΠ

(Opt∆(z) + (Π(u) + L(u, z) + α)w(Tz))



 ,

where for each (x, y) ∈ BΠ , Π(y) = Π(x) + L(x, y). To this aim, SA∆ enumerates any possible
maximal ball B of size at most ∆ (Line 4), then it assigns ΠB(vi) = L(v, vi) and computes the cost
of choosing a ball as follows. For each arc (x, y) ∈ B it assigns ΠB(y) = ΠB(x) + L(x, y) (Lines
6–8). For each arc (u, z) ∈ A, such that u ∈ B and z 6∈ B it computes (ΠTz , fTz) by running SA∆(z).
The cost of choosing a ball B is then computed at Lines 5, 8 and 11 as:

w(vi) +
∑

(x,y)∈B

(ΠB(x) + L(x, y)) · w(y)+

∑

(u,z):u∈B,z 6∈B

(fTz + (ΠB(u) + L(u, z) + α) · w(Tz)) .

As h(Tz) ≤ h−1, by inductive hypothesis, ΠTz is a solution for Tz which minimizes the price of
robustness and fTz = Opt∆(z). Hence, a ball which gives the minimum cost is chosen (Lines 12–14)
as Bmin.

Finally, SA∆ assigns Π and f(Π) according to Bmin and to ΠTz , for each (u, z) ∈ A, such that
u ∈ Bmin and z 6∈ Bmin (Lines 15–22). ¤

Proof (of Theorem 2). At Lines 1 and 15, SA∆ does not assign a slack time to arcs (v, vi). It follows
that for any pair of consecutive arcs a = (x, y), b = (y, z) ∈ A either Π(z) = Π(x)+L(x, y)+L(y, z)
or Π(z) = Π(x) + L(x, y) + L(y, z) + α. Then, for each v ∈ V , Π(v) ≤ d(r, v) + αbd(r,v)

2 c ≤
d(r, v)

(
1 + α

2

)
. For an optimal solution Π ′ of TT , Π ′(v) = d(r, v). Therefore, the statement holds.

¤

Proof (of Theorem 3). It is sufficient to give an instance such that any robust solution Π implies
f(Π) ≥ (1 + α

∆+1) · f(Π ′), where Π ′ is an optimal solution for TT .
Let us consider a tree consisting of a single path of ∆ + 1 arcs (xi, xi+1), i = 0, 1, . . . , ∆. For

each i = 0, 1, . . . , ∆, w(xi) = 0 and w(x∆+1) > 0. Each solution Π of RTT∆ is such that Π(x∆+1) ≥
d(x0, x∆+1)+α = ∆+1+α. An optimal solution Π ′ for TT is such that Π ′(x∆+1) = d(x0, x∆+1) =
∆ + 1. Hence, f(Π) = (∆ + 1 + α)w(x∆+1) = (1 + α

∆+1) · (∆ + 1)w(x∆+1) = (1 + α
∆+1) · f(Π ′). ¤

14

Proof (of Theorem 4). For each v ∈ V , SA∆(v) is performed only once as the result (Π, f(Π)) can
be stored.

For each v ∈ V , and for each vi ∈ No(v), Lines 4–14 of SA∆ require the following computation
times: Lines 5–8 require O(1) time as the nodes in a ball B are at most ∆; Lines 9–11 require
O(|Tvi |) time as there are O(|Tvi |) arcs fulfilling condition at Line 9; and Lines 12–14 require O(1)
time. The number of possible maximal balls rooted in vi is bounded by:

∆−1∑

i=1

(|Tvi |
∆− i

)
· |Tvi |i−1 ≤

∆−1∑

i=1

|Tvi |∆−i · |Tvi |i−1 = (∆− 1)|Tvi |∆−1.

As there are at most (∆ − 1)|Tvi |∆−1 possible maximal balls, Lines 4–14 requires O(|Ti|∆) time.
Lines 15–17 require O(1) time and Lines 18–20 requires O(|Tvi |) time.

It follows that, for each v ∈ V , Lines 2–21 require O(
∑

vi∈No(v) |Ti|∆) time. Note that,

∑

vi∈No(v)

|Ti|∆ ≤

 ∑

vi∈No(v)

|Ti|



∆

≤ n∆.

Hence, the computation time of calling SA∆(v) is O(n∆). Then, the overall computation time is
O(n · n∆) = O(n∆+1) since SA∆ is called at most n times.

The overall space occupancy is O(n2) as, for each v ∈ V , the result (Π, f(Π)) of SA∆(v) has to
be stored and Π requires O(n) space. ¤

15

B Further experiments

Corridors BzVr and PzBo (see Figure 7). As expected for the small corridors BzVr and PzBo the
price of robustness tends to the optimum much faster than for the other cases. Moreover the time
required for the computations is negligible (in the worst cases, it is 7.232 milliseconds for BzVr and
1.354 milliseconds for PzBo).

For the corridor BzVr, the price of robustness for small values of ∆ is high, whereas, it is small
for the corridor PzBo. This is due to the fact that in the former case the average activity time is
much smaller than the value of α, while in the latter case the average activity time is always greater
than α.

α = 9
α = 5
α = 1

∆

121086420

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

α = 9
α = 5
α = 1

∆

Time (sec)

121086420

0.0075
0.007

0.0065
0.006

0.0055
0.005

0.0045
0.004

0.0035
0.003

0.0025
0.002

α = 9
α = 5
α = 1

121086420

1.45
1.4

1.35
1.3

1.25
1.2

1.15
1.1

1.05
1

α = 9
α = 5
α = 1

Prob

121086420

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

1

Opt
α = 9
α = 5
α = 1

121086420

14000
13500
13000
12500
12000
11500
11000
10500
10000
9500

Opt
α = 9
α = 5
α = 1

f

121086420

65000

60000

55000

50000

45000

40000

35000

30000

Fig. 7. Corridors BzVr and PzBo

16

