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Important issue on railways

Answer to timetable queries as fast as possible

Known solution

A weighted directed graph represents a timetable

Shortest paths algorithms answer to timetable queries

Use speed-up techniques for shortest paths and preprocessed
information

Purpose of this work

Compute preprocessed information used by speed-up
techniques

Update preprocessed information used by speed-up techniques
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Speed-up techniques for shortest paths

Pruning of Dijkstra’s algorithm (SWW00, MSSWW05,
GKW06)

Geometric Information (WW03, WWZ05)

Landmark (GH05)

Arc-labelling (KMS05)

Hierarchical decomposition (SWZ02, HSW06, SS06,
DHMSW06)

Combinations (HSWW06, GKW06)

Dynamization for speed-up techniques

Geometric Information (WWZ03)

Landmark (DW07)

Hierarchical decomposition (SS07)
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Multi-level overlay graphs for shortest paths

Hierarchical speed-up technique for shortest paths (HSW06)
Experimentally fast when applied to timetable information

Results

Compute and store efficiently a multi-level overlay graph

Answer to distance queries theoretically faster than Dijkstra’s
algorithm by using a multi-level overlay graph

Update a multi-level overlay graph when an edge weight of
the graph changes
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Given a graph G = (V ,E ) and a a sequence V ≡ S0 ⊃ S1 ⊃ . . . ⊃ Sl of
subsets of V

M = (V ,E ∪ E1 ∪ . . . ∪ El) where
∀i = 1, 2, . . . , l , edge (u, v) ∈ Si × Si belongs to Ei ⇔ each shortest path
from u to v does not contain a node in Si (w(u, v) = d(u, v))

S1

S2

S3
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Given a graph G = (V ,E ) and a a sequence V ≡ S0 ⊃ S1 ⊃ . . . ⊃ Sl of
subsets of V

M = (V ,E ∪ E1 ∪ . . . ∪ El) where
∀i = 1, 2, . . . , l , edge (u, v) ∈ Si × Si belongs to Ei ⇔ each shortest path
from u to v does not contain a node in Si (w(u, v) = d(u, v))

S1

u1

v1
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Given a graph G = (V ,E ) and a a sequence V ≡ S0 ⊃ S1 ⊃ . . . ⊃ Sl of
subsets of V

M = (V ,E ∪ E1 ∪ . . . ∪ El) where
∀i = 1, 2, . . . , l , edge (u, v) ∈ Si × Si belongs to Ei ⇔ each shortest path
from u to v does not contain a node in Si (w(u, v) = d(u, v))
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Level 1
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Given a graph G = (V ,E ) and a a sequence V ≡ S0 ⊃ S1 ⊃ . . . ⊃ Sl of
subsets of V

M = (V ,E ∪ E1 ∪ . . . ∪ El) where
∀i = 1, 2, . . . , l , edge (u, v) ∈ Si × Si belongs to Ei ⇔ each shortest path
from u to v does not contain a node in Si (w(u, v) = d(u, v))

S2

Level 2
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Given a graph G = (V ,E ) and a a sequence V ≡ S0 ⊃ S1 ⊃ . . . ⊃ Sl of
subsets of V

M = (V ,E ∪ E1 ∪ . . . ∪ El) where
∀i = 1, 2, . . . , l , edge (u, v) ∈ Si × Si belongs to Ei ⇔ each shortest path
from u to v does not contain a node in Si (w(u, v) = d(u, v))

S3

Level 3
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Components tree TM: tree of connected components induced by V \ Si

S1
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Components tree TM: tree of connected components induced by V \ Si
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Definition (Barrier levels)

Pu(v) set of nodes x such that x is different from u and v ,
and x belongs to at least one shortest path from u to v in G .

su(v) =

{
max{maxlevel(x) | x ∈ Pu(v)} if Pu(v) 6≡ ∅
0 if Pu(v) ≡ ∅

S1

S2 u2

v2

z2

S1

S2

S3

S1

u2

z3

z1

z2

v2

Pu2(v2) = {. . . , z1, z2, . . . , z3 . . .}

su2(v2) = 3
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Property 1

Lemma

(u, v) ∈ Sj × Sj is a level edge of level j if and only if there exists a
path from u to v in G and su(v) < j .

S1

S2

S3

z1

z2
u2

(u2, z2) ∈ S1 × S1

(u2, z2) ∈ S2 × S2

su2(z2) = 1 (given by z1)

j = 1 su2(z2) ≥ j
j = 2 su2(z2) < j

(u2, z2) is a 2-level edge
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Property 2

Lemma

If e = (u, v) ∈
⋃l

i=1 Ei , then there exist j , k ∈ N, 1 ≤ j ≤ k ≤ l ,
such that e ∈ Ei , ∀i ∈ {j , . . . , k}, and e /∈ Ei , ∀i /∈ {j , . . . , k}.

S1

S2

S3

v1

u2

z2

z3
v2

(v1, z2) ∈ E1,E2

(z2, v2) ∈ E1,E2,E3

(u2, z3) ∈ E1

(z2, u2) ∈ E2
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Definition

wM(u, v) = (d̄(u, v), f(u, v), `(u, v)) =(d(u, v), su(v) + 1,min{maxlevel(u),maxlevel(v)}) If (u, v) is a
level edge

(w(u, v), 0, 0) otherwise

(·, 2, 2)

(·
,
1
,
2
)

(·, 1, 3)

(·, 1, 1)

(·,
1
,
1
)

(·, 1, 1)

(·,
1,

1)

(·, 1, 1)

(·
,
1
,
1
)
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Property 3

Lemma

(u, v) ∈ S1 × S1 is a level edge if and only if there exists a path
from u to v in G and su(v) < min{maxlevel(u),maxlevel(v)}.

S1

S2

S3

z1

z2
u2

su2 (z2) = 1 (given by z1)
min{maxlevel(u2), maxlevel(z2)} = 2
su2 (z2) < min{maxlevel(u2), maxlevel(z2)}
(u2, z2) is a level edge

su2 (v2) = 3 (given by z2)
min{maxlevel(u2), maxlevel(v2)} = 2
su2 (v2) > min{maxlevel(u2), maxlevel(v2)}
(u2, v2) is not a level edge
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In order to compute su(v)

We define

a weighted graph Gu = (V ,E ,wu) for each u ∈ S1

an algebraic structure (K,minK,⊕K)

such that, if wu : E → K, then

for each v ∈ V the distance from u to v in Gu is
du(v) = (d(u, v), su(v))

du(v) can be computed by Dijkstra’s shortest paths algorithm

Bruera, Cicerone, D’Angelo, Di Stefano, Frigioni On the dynamization of shortest path overlay graphs



Introduction
Computation of Multi level overlay graphs
Maintenance of Multi-level overlay graphs

Conclusions

Characterization of level edges
Computation of barrier levels
Computation ofM and TM
Shortest paths queries

Theorem

(K,minK,⊕K, (∞, 0), (0, 0)) is a closed semiring.

Theorem

du(v) = (d(u, v), su(v)), for each v ∈ V .

We can use Dijkstra’s shortest paths algorithm to compute d(u, v)
and su(v)

S1

S2 u2

v2

z2

S1

S2

S3

S1

u2

z3

z1

z2

v2
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For each node v ∈ V , we store S[v ] = maxlevel(v)

OVERLAY

For each u ∈ S1 |S1| times

1 Compute Gu O(n + m)

2 Run Dijkstra on Gu from u and get d(u, v) and su(v) O(m + n log n)

3 For each (u, v), v ∈ S1

4 If (su(v) < min{S[u], S[v ]} and d(u, v) 6= ∞) then O(n)

5 wM(u, v) := (d(u, v), su(v) + 1, min{S[u], S[v ]})

Lemma

OVERLAY requires O(|S1|(m + n log n)) time
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v3v2v1

L

· · · C0

C1

C2

C3

C4

J K

D E F

B C

A

H IG

· · · vn

Components tree

Is computed in linear time and space
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S1

S2

S3

z1

s

t

z3

u2

z1

s

t

z3

u2

Mst

The distance from s to t in Mst is the same that in G (HSW06)

Build Mst and compute distance in Mst costs less then compute
distance in G
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Purpose

Update a multi-level overlay graph M of a graph G and the
components tree when G changes as a consequence of a weight
increase or a weight decrease operation on an edge of G

Note

Distance queries can be answered as in the static case

The components tree does not change
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To built M, we use |S1| times Dijkstra’s algorithm

To update M, we use the dynamic algorithm of FMN00

It updates a shortest paths tree while weight increase or
weight decrease modifications occur

Procedure OVERLAY does not store the shortest paths tree
rooted in the nodes in S1

Hence, we need a procedure that first computes the shortest
paths trees and then computes M
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OVERLAY-2

COMPUTE Tu, u ∈ S1

1 For each u ∈ S1

2 Compute Gu

3 Run Dijkstra on Gu from u and get Tu containing d(u, v) and su(v)

COMPUTE M
4 For each (u, v) ∈ S1

5 If (su(v) < min{S[u], S[v ]} and d(u, v) 6= ∞) then

6 wM(u, v) := (d(u, v), su(v) + 1, min{S[u], S[v ]})

Lemma

OVERLAY-2 requires O(|S1|(m + n) log n)) time and
O(|S1|(n + m)) space
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UPDATE-M
1 Update graphs Gu, u ∈ S1 O(|S1|n)

2 Update trees Tu, u ∈ S1 O(∆
√

m log(n))

3 COMPUTE M O(|S1|n + m)

Lemma

UPDATE-M requires O(|S1|n + m + ∆
√

m log(n)) time

Here ∆ is the number of pairs in S1 × V that changes the distance
as a consequence of a modification of G
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Results

Compute a multi-level overlay graph in O(|S1|(m + n log n))

Answer to distance queries theoretically faster than Dijkstra’s
algorithm

Update a multi-level overlay graph in
O(|S1|n + m + ∆

√
m log(n))

Future works

Experimental evaluation
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