On the dynamization of shortest path overlay graphs

Work partially supported by the Future and Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL)

Francesco Bruera Serafino Cicerone Gianlorenzo D'Angelo Gabriele Di Stefano Daniele Frigioni

Deptartment of Electrical and Information Engineering University of L'Aquila - Italy {cicerone,gdangelo,gabriele,frigioni}@ing.univaq.it

Important issue on railways

Answer to timetable queries as fast as possible

Known solution

- A weighted directed graph represents a timetable
- Shortest paths algorithms answer to timetable queries
- Use speed-up techniques for shortest paths and preprocessed information

Purpose of this work

- Compute preprocessed information used by speed-up techniques
- Update preprocessed information used by speed-up techniques

Outline

Introduction

- Previous works
- Results of the paper
- Multi level overlay graphs
- 2 Computation of Multi level overlay graphs
 - Characterization of level edges
 - Computation of barrier levels
 - \bullet Computation of ${\cal M}$ and ${\cal T}_{{\cal M}}$
 - Shortest paths queries
- Maintenance of Multi-level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Outline

Introduction

- Previous works
- Results of the paper
- Multi level overlay graphs
- 2 Computation of Multi level overlay graphs
 - Characterization of level edges
 - Computation of barrier levels
 - \bullet Computation of ${\cal M}$ and ${\cal T}_{{\cal M}}$
 - Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Outline

Previous works

- Results of the paper
- Multi level overlay graphs
- 2 Computation of Multi level overlay graphs
 - Characterization of level edges
 - Computation of barrier levels
 - Computation of $\mathcal M$ and $\mathcal T_{\mathcal M}$
 - Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Speed-up techniques for shortest paths

- Pruning of Dijkstra's algorithm (SWW00, MSSWW05, GKW06)
- Geometric Information (WW03, WWZ05)
- Landmark (GH05)
- Arc-labelling (KMS05)
- Hierarchical decomposition (SWZ02, HSW06, SS06, DHMSW06)
- Combinations (HSWW06, GKW06)

Dynamization for speed-up techniques

- Geometric Information (WWZ03)
- Landmark (DW07)
- Hierarchical decomposition (SS07)

Results of the paper

Multi level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions

Outline

- Previous works
- Results of the paper
- Multi level overlay graphs
- 2 Computation of Multi level overlay graphs
 - Characterization of level edges
 - Computation of barrier levels
 - \bullet Computation of ${\cal M}$ and ${\cal T}_{{\cal M}}$
 - Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Multi-level overlay graphs for shortest paths

Hierarchical speed-up technique for shortest paths (HSW06) Experimentally fast when applied to timetable information

Results

- Compute and store efficiently a multi-level overlay graph
- Answer to distance queries theoretically faster than Dijkstra's algorithm by using a multi-level overlay graph
- **Update** a multi-level overlay graph when an edge weight of the graph changes

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Results of the paper Multi level overlay graphs

Outline

Introduction

- Previous works
- Results of the paper
- Multi level overlay graphs
- - Characterization of level edges
 - Computation of barrier levels
 - Computation of \mathcal{M} and $T_{\mathcal{M}}$
 - Shortest paths queries

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Given a graph G = (V, E) and a sequence $V \equiv S_0 \supset S_1 \supset \ldots \supset S_l$ of subsets of V $\mathcal{M} = (V, E \cup E_1 \cup \ldots \cup E_l)$ where $\forall i = 1, 2, \ldots, l$, edge $(u, v) \in S_i \times S_i$ belongs to $E_i \Leftrightarrow$ each shortest path

from u to v does not contain a node in S_i (w(u, v) = d(u, v))

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Computation of Multi level overlay graphs Maintenance of Multi-level overlay graphs Conclusions Previous works Results of the paper Multi level overlay graphs

Components tree $T_{\mathcal{M}}$: tree of connected components induced by $V \setminus S_i$

Bruera, Cicerone, D'Angelo, Di Stefano, Frigioni

On the dynamization of shortest path overlay graphs

Characterization of level edges Computation of barrier levels Computation of ${\cal M}$ and ${\cal T}_{{\cal M}}$ Shortest paths queries

Outline

- Previous works
- Results of the paper
- Multi level overlay graphs

2 Computation of Multi level overlay graphs

- Characterization of level edges
- Computation of barrier levels
- Computation of $\mathcal M$ and $\mathcal T_{\mathcal M}$
- Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Outline

- Previous works
- Results of the paper
- Multi level overlay graphs
- 2 Computation of Multi level overlay graphs
 - Characterization of level edges
 - Computation of barrier levels
 - Computation of $\mathcal M$ and $\mathcal T_{\mathcal M}$
 - Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Definition (Barrier levels)

 P_u(v) set of nodes x such that x is different from u and v, and x belongs to at least one shortest path from u to v in G.

•
$$s_u(v) = \begin{cases} \max\{\max(v) \mid x \in P_u(v)\} & \text{if } P_u(v) \neq \emptyset \\ 0 & \text{if } P_u(v) \equiv \emptyset \end{cases}$$

$$P_{u_2}(v_2) = \{\ldots, z_1, z_2, \ldots, z_3 \ldots\}$$

$$s_{u_2}(v_2)=3$$

Property 1

Lemma

 $(u, v) \in S_j \times S_j$ is a level edge of level j if and only if there exists a path from u to v in G and $s_u(v) < j$.

Characterization of level edges

Computation of barrier levels

Shortest paths queries

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Property 2

Lemma

If $e = (u, v) \in \bigcup_{i=1}^{l} E_i$, then there exist $j, k \in \mathbb{N}$, $1 \le j \le k \le l$, such that $e \in E_i$, $\forall i \in \{j, \dots, k\}$, and $e \notin E_i$, $\forall i \notin \{j, \dots, k\}$.

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Definition

$$w_{\mathcal{M}}(u, v) = (\bar{d}(u, v), f(u, v), \ell(u, v)) = \begin{cases} (d(u, v), s_u(v) + 1, \min\{maxlevel(u), maxlevel(v)\}) & \text{If } (u, v) \text{ is a} \\ & \text{level edge} \\ (w(u, v), 0, 0) & \text{otherwise} \end{cases}$$

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Property 3

Lemma

 $(u, v) \in S_1 \times S_1$ is a level edge if and only if there exists a path from u to v in G and $s_u(v) < \min\{maxlevel(u), maxlevel(v)\}$.

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Property 3

Lemma

 $(u, v) \in S_1 \times S_1$ is a level edge if and only if there exists a path from u to v in G and $s_u(v) < \min\{maxlevel(u), maxlevel(v)\}$.

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Outline

- Previous works
- Results of the paper
- Multi level overlay graphs

2 Computation of Multi level overlay graphs

- Characterization of level edges
- Computation of barrier levels
- Computation of $\mathcal M$ and $\mathcal T_{\mathcal M}$
- Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

In order to compute $s_u(v)$

We define

- a weighted graph $G_u = (V, E, w_u)$ for each $u \in S_1$
- an algebraic structure $(\mathcal{K}, \min_{\mathcal{K}}, \oplus_{\mathcal{K}})$

such that, if $w_u : E \to \mathcal{K}$, then

- for each $v \in V$ the distance from u to v in G_u is $d_u(v) = (d(u, v), s_u(v))$
- $d_u(v)$ can be computed by Dijkstra's shortest paths algorithm

 $\label{eq:computation} \begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Theorem

 $(\mathcal{K}, min_{\mathcal{K}}, \oplus_{\mathcal{K}}, (\infty, 0), (0, 0))$ is a closed semiring.

Theorem

$$d_u(v) = (d(u, v), s_u(v))$$
, for each $v \in V$.

We can use Dijkstra's shortest paths algorithm to compute d(u, v)and $s_u(v)$

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

Outline

- Previous works
- Results of the paper
- Multi level overlay graphs

2 Computation of Multi level overlay graphs

- Characterization of level edges
- Computation of barrier levels
- \bullet Computation of ${\cal M}$ and ${\it T}_{{\cal M}}$
- Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

For each node $v \in V$, we store S[v] = maxlevel(v)

Lemma

OVERLAY requires $O(|S_1|(m + n \log n))$ time

Components tree

Is computed in linear time and space

Characterization of level edges Computation of barrier levels Computation of ${\cal M}$ and ${\cal T}_{{\cal M}}$ Shortest paths queries

Outline

- Previous works
- Results of the paper
- Multi level overlay graphs

2 Computation of Multi level overlay graphs

- Characterization of level edges
- Computation of barrier levels
- Computation of $\mathcal M$ and $\mathcal T_{\mathcal M}$
- Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

 $\begin{array}{l} \mbox{Characterization of level edges} \\ \mbox{Computation of barrier levels} \\ \mbox{Computation of } \mathcal{M} \mbox{ and } \mathcal{T}_{\mathcal{M}} \\ \mbox{Shortest paths queries} \end{array}$

The distance from s to t in \mathcal{M}_{st} is the same that in G (HSW06)

Build $\mathcal{M}_{\mathit{st}}$ and compute distance in $\mathcal{M}_{\mathit{st}}$ costs less then compute distance in ${\cal G}$

Bruera, Cicerone, D'Angelo, Di Stefano, Frigioni

On the dynamization of shortest path overlay graphs

Outline

- Previous works
- Results of the paper
- Multi level overlay graphs
- - Characterization of level edges
 - Computation of barrier levels
 - Computation of \mathcal{M} and $T_{\mathcal{M}}$
 - Shortest paths queries

Maintenance of Multi-level overlay graphs 3

Purpose

Update a multi-level overlay graph \mathcal{M} of a graph G and the components tree when G changes as a consequence of a weight increase or a weight decrease operation on an edge of G

Note

- Distance queries can be answered as in the static case
- The components tree does not change

- To built \mathcal{M} , we use $|S_1|$ times Dijkstra's algorithm
- $\bullet\,$ To update $\mathcal M,$ we use the dynamic algorithm of FMN00
- It updates a shortest paths tree while weight increase or weight decrease modifications occur
- Procedure OVERLAY does not store the shortest paths tree rooted in the nodes in *S*₁
- \bullet Hence, we need a procedure that first computes the shortest paths trees and then computes ${\cal M}$

OVERLAY-2

COMPUTE T_u , $u \in S_1$

- For each $u \in S_1$
- 2 Compute G_u

3 Run Dijkstra on G_u from u and get T_u containing d(u, v) and $s_u(v)$ COMPUTE \mathcal{M}

• For each
$$(u, v) \in S_1$$

$$w_{\mathcal{M}}(u,v) := (d(u,v), s_u(v) + 1, \min\{\mathtt{S}[u], \mathtt{S}[v]\})$$

Lemma

6

OVERLAY-2 requires $O(|S_1|(m + n) \log n))$ time and $O(|S_1|(n + m))$ space

$\mathsf{UPDATE}\text{-}\mathcal{M}$

- Update graphs $G_u, u \in S_1$
- **2** Update trees $T_u, u \in S_1$
- COMPUTE M

 $O(|S_1|n)$ $O(\Delta \sqrt{m} \log(n))$ $O(|S_1|n+m)$

Lemma

UPDATE-M requires $O(|S_1|n + m + \Delta\sqrt{m}\log(n))$ time

Here Δ is the number of pairs in $S_1 \times V$ that changes the distance as a consequence of a modification of G

Outline

Introduction

- Previous works
- Results of the paper
- Multi level overlay graphs
- 2 Computation of Multi level overlay graphs
 - Characterization of level edges
 - Computation of barrier levels
 - \bullet Computation of ${\cal M}$ and ${\cal T}_{{\cal M}}$
 - Shortest paths queries
- 3 Maintenance of Multi-level overlay graphs

Results

- Compute a multi-level overlay graph in $O(|S_1|(m + n \log n))$
- Answer to distance queries theoretically faster than Dijkstra's algorithm
- Update a multi-level overlay graph in $O(|S_1|n + m + \Delta\sqrt{m}\log(n))$

Future works

Experimental evaluation