Partially Dynamic Concurrent Update of Distributed Shortest Paths

Serafino Cicerone Gabriele Di Stefano

Gianlorenzo D'Angelo Daniele Frigioni

Dept. of Electrical and Information Engineering - Univ. of L'Aquila - Italy {cicerone,gdangelo,gabriele,frigioni}@ing.univaq.it

Work partially supported by the Future and Emerging Technologies Unit of EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL)

Purpose

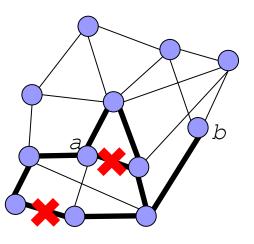
Update shortest paths in a graph representing a distributed asynchronous system (e.g. the Internet) when edge changes occur

Admitted edge changes:
weight increase/delete
weight decrease/insert

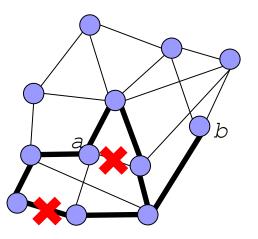
The changes can occur in an unpredictable way (concurrent updates)

Purpose

Sequential edge delete



Concurrent edge delete



Outline

- Previous works
- Results of the paper
- Complexity measures
- Decremental algorithm
- Incremental algorithm
- Conclusions and future works

Previous Works

- Classical Bellman-Ford and its variations:
 - □ Complexity: exponential
 - Drawback: Counting Infinity and Looping phenomena
- Awerbuch, Cidon and Kutten, 1990
 - \Box Complexity: $\Theta(n)$ messages and $O(n^2)$ space per node
 - Drawback: is not able to concurrently update shortest paths

Italiano, 1991

- □ Complexity: O(n log(nW)) messages and O(n) space per node
- Drawback: is not able to concurrently update shortest paths
- Ramarao and Venkatesan, 1992
 - \Box Complexity: O(n³) messages and O(n) space per node
 - Drawback: is not able to concurrently update shortest paths
- Cicerone et al, 2003
 - □ Complexity: O(maxdeg Δ_{σ}) messages and O(n) space per node
 - Drawback: is not able to concurrently update shortest paths

Results of the paper

- By the above analysis, two classes of algorithms are known:
- 2. Those which are not able to concurrently update shortest paths
- 3. Those which are able to concurrently update shortest paths but
 - either they suffer of the looping and counting phenomena, or
 - their convergence can be very slow in the case of weight increase operations (possibly infinite)

This paper provides a partially dynamic algorithm that:

- is able to concurrently update shortest paths
- avoids the looping and counting phenomena
- converges fast

Results of the paper

In Detail:

- we propose a new decremental algorithm
 - Complexity: O(maxdeg Δ²) messages and O(maxdeg Δ) space per node
 - □ is able to concurrently update shortest paths
- we propose a new incremental algorithm
 - works also in the concurrent case
 - \Box Complexity: O(maxdeg Δ) messages and O(n) space per node

Here Δ is the number of nodes affected by a set of weight change operations

Complexity measures

Given a set of k weight changes $\sigma_1, \sigma_2, \ldots, \sigma_k$ and a source node s:

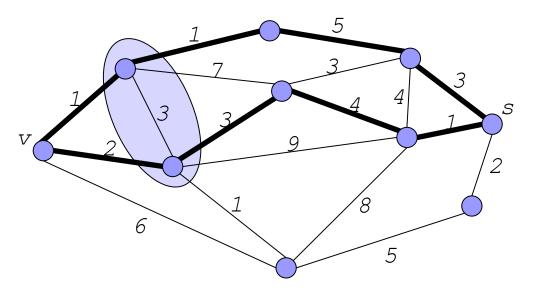
• $\delta_{\sigma_i,s}$: set of nodes that change the shortest paths toward s as a consequence of σ_i

•
$$\bigcup_{s \in V} \delta_{\sigma_i,s}$$
: nodes affected by σ_i

• the number of affected nodes is at most: $\Delta = \sum_{i=1}^{k} \sum_{s \in V} |\delta_{\sigma_i,s}|$

We give the complexity bounds as a function of Δ

Decremental Algorithm - data structures

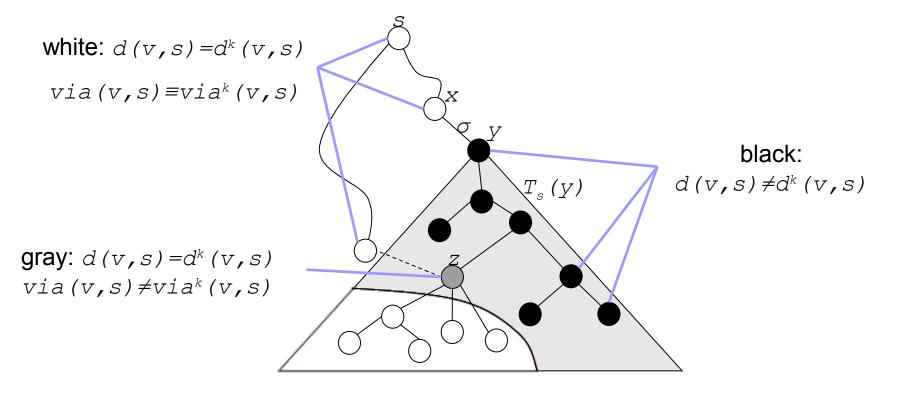


- There are 2 shortest paths:
 - \Box v-s distance, d(v,s): weight of the shortest paths (10)
 - \Box v-s via, via (v, s): subset of N(v) containing nodes in a shortest path

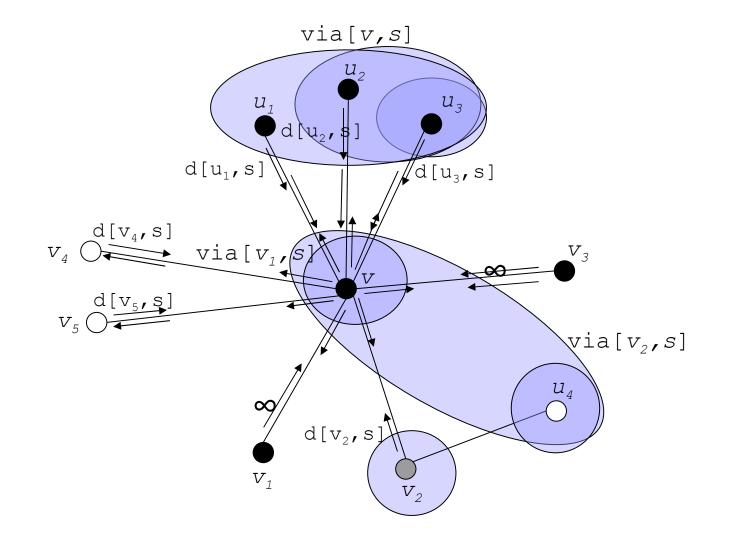
Data structures:

- \Box d[v,s]: estimated distance from v to s
- □ via[v,s]: estimated via from v to s

Decremental Algorithm - definitions



Decremental Algorithm - behavior



Decremental Algorithm – complexity

- Message Complexity
 - Only black nodes send messages
 - □ For each source *s*, each black node *v* sends *deg(v)* messages at each update
 - \Box There are at most $|\delta_{\sigma_i,s}|$ updates
 - \Box There are $|\delta_{\sigma_i,s}|$ black nodes

$$\sum_{i=1}^{k} \sum_{s \in V} \left(\max deg \cdot |\delta_{\sigma_i,s}|^2 \right) \le \max deg \cdot \Delta^2$$

- Space Complexity
 - □ via[v,s] contains at most deg(v) elements
 - □ via[v,*] requires O(deg(v) n)
 - $\Box d[v, *]$ requires O(n)
 - □ At most: O(maxdeg n)

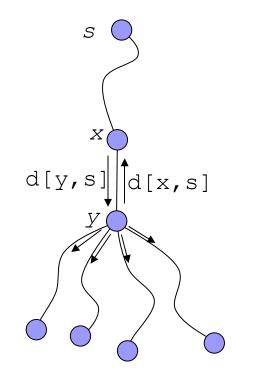
Incremental Algorithm - data structures

The same as the decremental algorithm but:

via[v,s] stores only one node in via(v,s)

via[*,s] induces a shortest paths tree

Incremental Algorithm - behavior



- y is closest than x to s, then y updates its data structures
- Each shortest path that changes contains the edge (x, y)
- y propagates the algorithm in the shortest paths tree induced by via[*,y]

Incremental Algorithm – complexity

Message Complexity

- \Box For each source s, for each node v, there are at most $|\delta_{\sigma_i,s}|$ updates
- \Box v sends deg (v) messages at each update

$$\sum_{i=1}^{k} \sum_{s \in V} (maxdeg \cdot |\delta_{\sigma_i,s}|) = maxdeg \cdot \Delta$$

Conclusions and future works

- We propose a pair of partially dynamic algorithms that are able to concurrently update shortest paths
 - □ Decremental algorithm complexity: O(maxdeg Δ^2) messages and O(maxdeg Δ) space per node
 - Incremental algorithm complexity: O(maxdeg Δ) messages and O(n) space per node

Future works:

- Fully dynamic algorithms
- □ Experimental evaluation