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Purpose

Update shortest paths in a graph representing a 
distributed asynchronous system (e.g. the 

Internet) when edge changes occur

 Admitted edge changes:
 weight increase/delete
 weight decrease/insert

 The changes can occur in an unpredictable way 
(concurrent updates)
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Purpose

a bSequential edge delete

a bConcurrent edge delete
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Outline

 Previous works
 Results of the paper
 Complexity measures
 Decremental algorithm
 Incremental algorithm
 Conclusions and future works
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Previous Works
 Classical Bellman-Ford and its variations:

 Complexity: exponential
 Drawback: Counting Infinity and Looping phenomena

 Awerbuch, Cidon and Kutten, 1990
 Complexity: Θ(n) messages and O(n2) space per node
 Drawback: is not able to concurrently update shortest paths

 Italiano, 1991
 Complexity: O(n log(nW)) messages and O(n) space per node
 Drawback: is not able to concurrently update shortest paths

 Ramarao and Venkatesan, 1992
 Complexity: O(n3) messages and O(n) space per node
 Drawback: is not able to concurrently update shortest paths

 Cicerone et al, 2003
 Complexity: O(maxdeg Δσ) messages and O(n) space per node
 Drawback: is not able to concurrently update shortest paths
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Results of the paper

By the above analysis, two classes of algorithms are 
known:

2. Those which are not able to concurrently update 
shortest paths

3. Those which are able to concurrently update shortest 
paths but
 either they suffer of the looping and counting phenomena, or
 their convergence can be very slow in the case of weight 

increase operations (possibly infinite)

This paper provides a partially dynamic algorithm that:
 is able to concurrently update shortest paths
 avoids the looping and counting phenomena
 converges fast
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Results of the paper

In Detail:
 we propose a new decremental algorithm

 Complexity: O(maxdeg Δ2) messages and O(maxdeg Δ) space 
per node

 is able to concurrently update shortest paths
 we propose a new incremental algorithm 

 works also in the concurrent case
 Complexity: O(maxdeg Δ) messages and O(n) space per node

Here Δ is the number of nodes affected by a set of weight 
change operations
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Complexity measures

Given a set of k weight changes σ1, σ2, . . . , σk and a 
source node s:

        : set of nodes that change the shortest paths toward 
s as a consequence of σi

            : nodes affected by σi

 the number of affected nodes is at most:

We give the complexity bounds as a function of Δ
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Decremental Algorithm - data structures
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 There are 2 shortest paths:
 v-s distance, d(v,s): weight of the shortest paths (10)
 v-s via, via(v,s): subset of N(v) containing nodes in a shortest path

 Data structures:
 d[v,s]: estimated distance from v to s
 via[v,s]: estimated via from v to s
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Decremental Algorithm - definitions
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Decremental Algorithm - behavior
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Decremental Algorithm – complexity

 Message Complexity
 Only black nodes send messages
 For each source s, each black node v sends deg(v) 

messages at each update
 There are at most           updates
 There are          black nodes

 Space Complexity
 via[v,s] contains at most deg(v) elements
 via[v,*] requires O(deg(v) n)
 d[v,*] requires O(n)
 At most: O(maxdeg n)
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Incremental Algorithm - data structures

The same as the decremental algorithm but:

via[v,s] stores only one node in via(v,s)

via[*,s] induces a shortest paths tree
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Incremental Algorithm - behavior

 y is closest than x to s, 
then y updates its data 
structures

 Each shortest path that 
changes contains the 
edge (x,y)

 y propagates the 
algorithm in the shortest 
paths tree induced by 
via[*,y]
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Incremental Algorithm – complexity

 Message Complexity
For each source s, for each node v , there are 

at most           updates
v sends deg(v) messages at each update

 Space Complexity
via[v,*] requires O(n)
d[v,*] requires O(n)
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Conclusions and future works
 We propose a pair of partially dynamic 

algorithms that are able to concurrently update 
shortest paths 
 Decremental algorithm complexity: O(maxdeg Δ2) 

messages and O(maxdeg Δ) space per node
 Incremental algorithm complexity: O(maxdeg Δ) 

messages and O(n) space per node

 Future works:
 Fully dynamic algorithms
 Experimental evaluation
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