
Partially Dynamic
Concurrent Update of
Distributed Shortest
Paths

Serafino Cicerone Gianlorenzo D’Angelo
Gabriele Di Stefano Daniele Frigioni

Dept. of Electrical and Information Engineering - Univ. of L’Aquila - Italy
{cicerone,gdangelo,gabriele,frigioni}@ing.univaq.it

Work partially supported by the Future and Emerging Technologies Unit of EC (IST
priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL)

 2

Purpose

Update shortest paths in a graph representing a
distributed asynchronous system (e.g. the

Internet) when edge changes occur

 Admitted edge changes:
 weight increase/delete
 weight decrease/insert

 The changes can occur in an unpredictable way
(concurrent updates)

 3

Purpose

a bSequential edge delete

a bConcurrent edge delete

 4

Outline

 Previous works
 Results of the paper
 Complexity measures
 Decremental algorithm
 Incremental algorithm
 Conclusions and future works

 5

Previous Works
 Classical Bellman-Ford and its variations:

 Complexity: exponential
 Drawback: Counting Infinity and Looping phenomena

 Awerbuch, Cidon and Kutten, 1990
 Complexity: Θ(n) messages and O(n2) space per node
 Drawback: is not able to concurrently update shortest paths

 Italiano, 1991
 Complexity: O(n log(nW)) messages and O(n) space per node
 Drawback: is not able to concurrently update shortest paths

 Ramarao and Venkatesan, 1992
 Complexity: O(n3) messages and O(n) space per node
 Drawback: is not able to concurrently update shortest paths

 Cicerone et al, 2003
 Complexity: O(maxdeg Δσ) messages and O(n) space per node
 Drawback: is not able to concurrently update shortest paths

 6

Results of the paper

By the above analysis, two classes of algorithms are
known:

2. Those which are not able to concurrently update
shortest paths

3. Those which are able to concurrently update shortest
paths but
 either they suffer of the looping and counting phenomena, or
 their convergence can be very slow in the case of weight

increase operations (possibly infinite)

This paper provides a partially dynamic algorithm that:
 is able to concurrently update shortest paths
 avoids the looping and counting phenomena
 converges fast

 7

Results of the paper

In Detail:
 we propose a new decremental algorithm

 Complexity: O(maxdeg Δ2) messages and O(maxdeg Δ) space
per node

 is able to concurrently update shortest paths
 we propose a new incremental algorithm

 works also in the concurrent case
 Complexity: O(maxdeg Δ) messages and O(n) space per node

Here Δ is the number of nodes affected by a set of weight
change operations

 8

Complexity measures

Given a set of k weight changes σ1, σ2, . . . , σk and a
source node s:

 : set of nodes that change the shortest paths toward
s as a consequence of σi

 : nodes affected by σi

 the number of affected nodes is at most:

We give the complexity bounds as a function of Δ

 9

Decremental Algorithm - data structures

s
v 9

1

8

5

3 4 4

2

1

2

6
1

3
1

37

5

3

 There are 2 shortest paths:
 v-s distance, d(v,s): weight of the shortest paths (10)
 v-s via, via(v,s): subset of N(v) containing nodes in a shortest path

 Data structures:
 d[v,s]: estimated distance from v to s
 via[v,s]: estimated via from v to s

 10

Decremental Algorithm - definitions

x

y

Ts(y)

z

σ

s
white: d(v,s)=dk(v,s)

via(v,s)≡viak(v,s)

gray: d(v,s)=dk(v,s)
via(v,s)≠viak(v,s)

black:
d(v,s)≠dk(v,s)

 11

Decremental Algorithm - behavior

via[v,s]

v
v3

v2
v1

v4

v5

u1

u2

u3

via[v2,s]

via[v1,s]

∞

∞

u4

d[v2,s]

d[u3,s]

d[v5,s]

d[v4,s]

d[u1,s]

d[u2,s]

 12

Decremental Algorithm – complexity

 Message Complexity
 Only black nodes send messages
 For each source s, each black node v sends deg(v)

messages at each update
 There are at most updates
 There are black nodes

 Space Complexity
 via[v,s] contains at most deg(v) elements
 via[v,*] requires O(deg(v) n)
 d[v,*] requires O(n)
 At most: O(maxdeg n)

 13

Incremental Algorithm - data structures

The same as the decremental algorithm but:

via[v,s] stores only one node in via(v,s)

via[*,s] induces a shortest paths tree

 14

Incremental Algorithm - behavior

 y is closest than x to s,
then y updates its data
structures

 Each shortest path that
changes contains the
edge (x,y)

 y propagates the
algorithm in the shortest
paths tree induced by
via[*,y]

x

y

s

d[x,s]d[y,s]

 15

Incremental Algorithm – complexity

 Message Complexity
For each source s, for each node v , there are

at most updates
v sends deg(v) messages at each update

 Space Complexity
via[v,*] requires O(n)
d[v,*] requires O(n)

 16

Conclusions and future works
 We propose a pair of partially dynamic

algorithms that are able to concurrently update
shortest paths
 Decremental algorithm complexity: O(maxdeg Δ2)

messages and O(maxdeg Δ) space per node
 Incremental algorithm complexity: O(maxdeg Δ)

messages and O(n) space per node

 Future works:
 Fully dynamic algorithms
 Experimental evaluation

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16

